A novel porous metal fiber sintered felt (PMFSF) with a three-dimensional reticulated structure has been produced by the solid-state sintering of copper fibers. The copper fibers, with several microstructures distributed onto the surface, were fabricated using the cutting method. The Scanning Electron Microscope (SEM) results revealed that there were two kinds of sintering joints present in the PMFSFs: fiber-to-fiber surface contact and crossing fiber meshing. In the sintering process, the surface microstructures of the fibers helped to improve the forming process of the PMFSFs, as a result of high surface energy. Furthermore, the effect of different sintering parameters on the forming process of the PMFSFs was studied in detail, including the sintering temperature and holding time. The sintering temperatures had a significant influence on the surface microstructures of single fiber and specific surface area of the PMFSFs, but the holding time did not. The optimal PMFSF with a three-dimensional reticulated structure and larger specific surface area was produced by sintering copper fibers at 800掳C for 30 minutes in the reduction atmosphere.

影响因子
2.274
论文下载
作者

Yong Tang;Wei Zhou;Jianhua Xiang;Wangyu Liu;Minqiang Pan.

期刊

Materials and Manufacturing Processes,25,7,565-571(2010)

年份