The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against bearing steel (AISI 52100) in a ring-on-block contact mode under the lubrication of aqueous solution of 3.5% NaCl was evaluated. The worn polymer surfaces were analyzed by means of three dimensional profiling, atomic force microscopy, Polarized Raman microanalysis, field emission scanning electron microscopy, and nanoindentation testing. It was found that unusual wavelike abrasion patterns were formed on the worn surface of UHMWPE under properly selected sliding conditions. In the presence of plowing effect, the molecular chains of UHMWPE and short-rod like microcrystalline grains of abrasion pattern were both further oriented along the plowing direction and became tiny and dense owing to microstructure reconstruction. Resultant microstructurally reconstructed worn surface of UHMWPE had a higher nanoindentation hardness and modulus as well as increased wear resistance.

影响因子
2.531
论文下载
作者

Jianzhang Wang,Beibei Chen,Fengyuan Yan,Qunji Xue,Fei Zhao.

期刊

Wear,272,1,176-183(2011)

年份