This paper demonstrated a novel magnetron sputtering method used for the improvement in thermal energy storage and retrieval rates of phase change materials (PCMs). The ten types of ternary fatty acid eutectics (i.e., CA–LA–MA, CA–LA–PA, CA–LA–SA, CA–MA–PA, CA–MA–SA, CA–PA–SA, LA–MA–PA, LA–MA–SA, LA–PA–SA and MA–PA–SA) were firstly prepared using five fatty acids such as capric acid (CA), lauric acid (LA), myristic acid (MA), palmitic acid (PA) and stearic acid (SA) and then selected as solid–liquid PCMs. Thereafter, magnetron sputter coating was used to deposit the functional silver (Ag) nanolayers onto the surface of electrospun polyacrylonitrile (PAN) nanofibrous mats serving as supporting skeleton. Finally, a series of composite PCMs were fabricated by adsorbing the prepared ternary eutectics into three-dimensional porous network structures of Ag-coated PAN membranes. The observations by EDX determined the formation of Ag nanolayers on the PAN nanofibers surface after magnetron sputtering. The SEM images illustrated that the Ag-coated PAN nanofibers appeared to have larger fiber diameter and rougher surface. Ag-coated PAN nanofibrous mats could effectively prevent the leakage of molten ternary eutectics and help maintain form-stable structure due to surface tension forces, capillary and nanoconfinement effects. The DSC results suggested that the phase change temperatures of the ternary fatty acid eutectics were obviously lower than those of individual fatty acids and their binary eutectics. The adsorption rates of ternary fatty acid eutectics in the composite PCMs were determined to be about 89–98 %. The thermal performance test indicated that the metallic coating of Ag dramatically improved the thermal energy storage and retrieval rates of the composite PCMs.
Huizhen Ke,Zengyuan Pang,Bin Peng,Jing Wang,Yibing Cai,Fenglin Huang,Qufu Wei.
Journal of Thermal Analysis and Calorimetry,1-15(2015)