Recently, considerable efforts have been made on superhydrophobic–superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.
Hao Yang,Pihui Pi,Zhuo-ru Yang,Zhong Lu,Rong Chen.
Applied Surface Science,388,Part A,268-273(2016)